Recent advances in safety-critical risk-aware control are predicated on apriori knowledge of the disturbances a system might face. This paper proposes a method to efficiently learn these disturbances online, in a risk-aware context. First, we introduce the concept of a Surface-at-Risk, a risk measure for stochastic processes that extends Value-at-Risk -- a commonly utilized risk measure in the risk-aware controls community. Second, we model the norm of the state discrepancy between the model and the true system evolution as a scalar-valued stochastic process and determine an upper bound to its Surface-at-Risk via Gaussian Process Regression. Third, we provide theoretical results on the accuracy of our fitted surface subject to mild assumptions that are verifiable with respect to the data sets collected during system operation. Finally, we experimentally verify our procedure by augmenting a drone's controller and highlight performance increases achieved via our risk-aware approach after collecting less than a minute of operating data.
translated by 谷歌翻译
Reinforcement Learning (RL) can solve complex tasks but does not intrinsically provide any guarantees on system behavior. For real-world systems that fulfill safety-critical tasks, such guarantees on safety specifications are necessary. To bridge this gap, we propose a verifiably safe RL procedure with probabilistic guarantees. First, our approach probabilistically verifies a candidate controller with respect to a temporal logic specification, while randomizing the controller's inputs within a bounded set. Then, we use RL to improve the performance of this probabilistically verified, i.e. safe, controller and explore in the same bounded set around the controller's input as was randomized over in the verification step. Finally, we calculate probabilistic safety guarantees with respect to temporal logic specifications for the learned agent. Our approach is efficient for continuous action and state spaces and separates safety verification and performance improvement into two independent steps. We evaluate our approach on a safe evasion task where a robot has to evade a dynamic obstacle in a specific manner while trying to reach a goal. The results show that our verifiably safe RL approach leads to efficient learning and performance improvements while maintaining safety specifications.
translated by 谷歌翻译
在这封信中,作者提出了一种两步的方法来评估和验证真正的系统,以满足其运作目标的能力。具体而言,每当系统目标具有可量化的满意度量时,即信号时间逻辑规范,屏障函数等 - 作者通过详细说明的贝叶斯优化程序,制定了两个单独的优化问题。这种双向方法具有量化系统模拟器与其硬件对应物之间的SIM2重组的增加的益处。我们的贡献是双重的。首先,我们在解决这些优化问题时表现出了我们概述的优化过程的可重复性。其次,我们表明相同的过程可以通过识别在不同环境中运行的模拟器和其硬件对应物之间的SIM2重差来区分不同环境之间。
translated by 谷歌翻译
在现代世界中,数据科学和分析以优化或预测结果的应用无处不在。数据科学和分析已经优化了市场中存在的几乎所有领域。在我们的调查中,我们专注于如何在体育领域采用分析领域,以及它如何促进游戏的转型,从评估现场玩家及其选择到赢得团队的预测以及大型体育比赛的门票和商业方面的营销。我们将介绍体育分析领域采用的不同运动的分析工具,算法和方法论,并介绍我们对同一体育的看法,我们还将比较和对比这些现有方法。通过这样做,我们还将介绍任何希望尝试体育数据并分析游戏的各个方面的人考虑的最佳工具,算法和分析方法。
translated by 谷歌翻译
数字技术的发展和体育运动的日益普及激发了创新者,通过引入幻想体育平台FSP,将体育倾向的用户带到一个全新的不同层次上。数据科学和分析的应用在现代世界中无处不在。数据科学和分析打开门,以获得更深入的理解和帮助,以帮助决策过程。我们坚信,我们可以采用数据科学来预测FSP上的获胜幻想板球团队,Dream 11.我们建立了一个预测模型,可以预测潜在游戏中玩家的性能。我们结合了贪婪和背包算法的组合,开出了11名球员的组合,创建了一支幻想板球团队,这是最重要的统计赔率,即最大的团队成为最强的团队,从而使我们有更大的机会赢得梦想中的赌注。 11 FSP。我们使用Pycaret Python库来帮助我们理解并采用最佳回归算法来进行问题陈述,以做出精确的预测。此外,我们使用Plotly Python图书馆为我们提供了对团队的视觉见解,并且玩家通过计算前瞻性游戏的统计和主观因素来表演。交互作用图帮助我们提高了我们的预测模型的建议。您要么赢得大,赢得小巧,要么根据预期游戏中为您的幻想团队选出的球员的表现而失去赌注,而我们的模型增加了您赢得大的可能性。
translated by 谷歌翻译
区域覆盖范围问题是使用安装在机器人(例如无人驾驶汽车(UAV)(UAV)和无人接地车辆(UGV)等机器人上的传感器有效维修给定的二维表面的任务。我们提出了一种新颖的配方,用于生成多个容量受限机器人的覆盖路线,可以根据电池寿命或飞行时间指定容量。遍历环境对具有容量限制的机器人资源产生了需求。我们方法的主要方面是将区域覆盖问题转换为线覆盖范围问题(即线性特征的覆盖范围),然后生成途径,以最大程度地减少旅行的总成本,同时尊重容量约束。我们定义了两种旅行模式:(1)维修和(2)无人机,这与机器人是否执行特定于任务的操作相对应。我们的配方允许对两种模式的单独和不对称的旅行成本和需求。此外,从细胞分解计算出来的细胞,旨在最小化转弯的数量,不需要单调多边形。我们为细胞分解和生成服务轨道开发了新的程序,这些过程可以处理有或没有孔的非符号酮多边形。我们在具有25个室内环境的地面机器人数据集和一个具有300个室外环境的空中机器人数据集上建立了算法的功效。该算法生成的解决方案的成本比最新方法平均低10%。我们还证明了我们在无人机实验中的算法。
translated by 谷歌翻译
线覆盖范围是为环境中的一组一维功能提供服务的任务。这对于检查线性基础设施(例如道路网络,电力线以及石油和天然气管道)很重要。本文通过在图上将其建模为优化问题,解决了空中和地面机器人的单个机器人线覆盖率问题。该问题属于广泛的ARC路由问题,与不对称的农村邮政问题(RPP)密切相关。本文提供了一个整数线性编程公式,并提供了正确的证明。使用最低成本流问题,我们开发近似算法,并保证解决方案质量。这些保证还改善了不对称RPP的现有结果。主要算法将问题分为三种情况,以所需图的结构,即需要维修的特征诱导的图。我们在世界上50个人口最多的城市的道路网络上评估了我们的算法。该算法以改进的启发式增强,在3s内运行,并生成最佳最佳10%以内的解决方案。我们在UNC Charlotte校园路网络上通过商业无人机在实验中展示了我们的算法。
translated by 谷歌翻译
线覆盖范围的问题是找到有效的路由,以通过一个或多个资源约束的机器人覆盖线性特征。线性具有模型环境,例如道路网络,电力线以及石油和天然气管道。我们为机器人定义了两种旅行模式:维修和陷入困境。机器人服务功能如果它执行特定于任务的操作,例如拍摄图像,则它可以遍历该功能;否则,它是无人机的。穿越环境会产生成本(例如旅行时间)和对资源的需求(例如电池寿命)。维修和无人机的成本和需求功能可能具有不同的成本和需求功能,我们进一步允许它们取决于方向。我们将环境建模为图形,并提供整数线性程序。由于问题是NP-HARD,因此我们开发了一种快速有效的启发式算法,即合并 - 默认混合物(MEM)。该算法的建设性属性使得为大图求解了多depot版本。我们进一步扩展了MEM算法,以处理转弯成本和非语言限制。我们在50个道路网络的数据集上对算法进行基准测试,并在道路网络上使用空中机器人进行了实验中的算法。
translated by 谷歌翻译
本文介绍了相关的弧定向问题(CAOP),其中的任务是找到机器人团队的路线,以最大程度地收集与环境中功能相关的奖励的收集。这些功能可以是一维或环境中的点,并且可以具有空间相关性,即访问环境中的功能可能会提供与相关功能相关的奖励的一部分。机器人在环境环境时会产生成本,并且路线的总成本受到资源限制(例如电池寿命或操作时间)的限制。由于环境通常很大,我们允许多个仓库在机器人必须启动和结束路线的地方。 CAOP概括了相关的定向问题(COP),其中奖励仅与点特征相关联以及ARC定向启动问题(AOP),其中奖励与无空间相关。我们制定了一个混合整数二次程序(MIQP),该程序正式化了问题并提供最佳的解决方案。但是,这个问题是NP-HARD,因此我们开发了一种有效的贪婪的建设性算法。我们用两种不同的应用说明了问题:甲烷气体泄漏检测和道路网络覆盖范围的信息路径计划。
translated by 谷歌翻译
RDMA超过融合以太网(ROCE),由于其与常规以太网的织物的兼容性,对数据中心网络具有重要的吸引力。但是,RDMA协议仅在(几乎)无损网络上有效,这强调了拥塞控制对ROCE网络的重要作用。不幸的是,基于优先流量控制(PFC)的本地ROCE拥塞控制方案遭受了许多缺点,例如不公平,线路阻滞和僵局。因此,近年来,已经提出许多计划为ROCE网络提供额外的拥塞控制,以最大程度地减少PFC缺点。但是,这些方案是针对一般数据中心环境提出的。与使用商品硬件构建并运行通用工作负载的一般数据中心相反,高性能分布式培训平台部署高端加速器和网络组件,并专门使用集体(全能,全能,全能)运行培训工作负载)通信库进行通信。此外,这些平台通常具有一个私人网络,将其通信流量与其他数据中心流量分开。可扩展的拓扑意识集体算法固有地设计旨在避免造成的模式并最佳地平衡流量。这些独特的功能需要重新审视先前提出的通用数据中心环境的拥塞控制方案。在本文中,我们彻底分析了在分布式培训平台上运行时的一些SOTA ROCE拥塞控制方案与PFC。我们的结果表明,先前提出的ROCE拥塞控制计划对培训工作负载的端到端表现几乎没有影响,这激发了根据分布式培训平台和分布式培训平台和特征的设计优化但低空的拥塞控制计划的必要性工作负载。
translated by 谷歌翻译